

Activités ITHD LAM/ONERA

Atelier ITHD de l'ASHRA

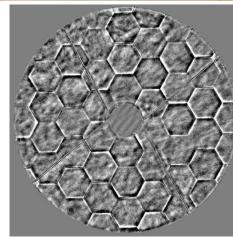
Nice 11-13 mai 2016

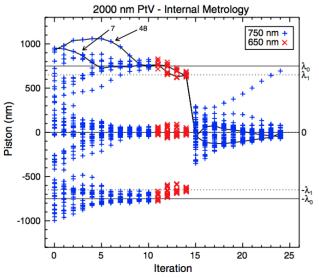
LAM: Arthur Vigan, Emmanuel Hugot, Kjetil Dohlen, Hervé Le Coroller, Marc Ferrari, Carlos Correia, services techniques et groupe systemes planetaires

ONERA: Thierry Fusco, JF Sauvage, Laurent Mugnier, Cyril Petit, jean-Marc Conan

Les activités de R&D amont

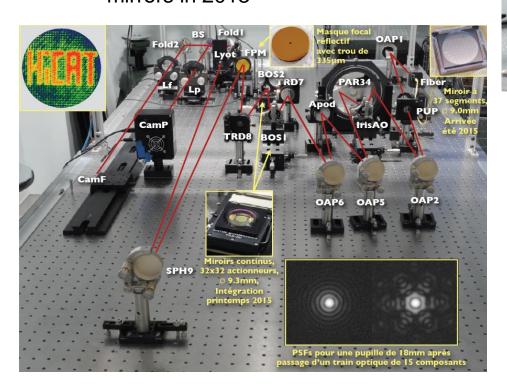
- Aspects système optique et télescope
 - Cophasage
 - Polissage
- Optique adaptative extrême
 - Analyse / contrôle rapide du front d'onde
- Contrôle de front d'onde différentiel
 - Optimisation de l'image / contraste au foyer scientifique
- Techniques d'imagerie haut contraste
 - Composants et traitement de données
- Moyens de test
 - MITHIC
 - Acces ciel: SPHERE, Keck, GeMs, LBT

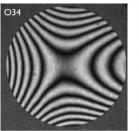

Aspects système optique et télescope

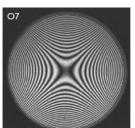


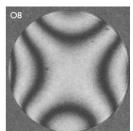
ZEUS

- Thematique cophasage: 1999 2009
- Expérience de cophasage des miroirs segmentés:
 - Active Phasing Experiment: 4 analyseurs testé en labo et sur le ciel (VLT)
 - Validation du cophasage en présence de turbulence
- ZEUS: ZErnike Unit for Segment phasing
 - Masque de Zernike d'un diamètre similaire au seeing
 - développé au LAM en collaboration avec IAC et ESO
 - Combinaison de différents masques/filtres pour s'adapter aux conditions et accroitre l'intervalle de capture
- Résultats sur le ciel (2008-2009):
 - Précision de cophasage de ~15 nm RMS, magnitude limite V=15.7 (Surdej et al. 2010)
 - Intervalle de capture ±4 micron PtV (WF) en utilisant 2 longueurs d'ondes (Vigan et al. 2011)
 - Technologie mature pour mesure de piston, mais pas d'étude détaillée pour le tip-tilt
- Ressources:
 - Personnels: KDo (20%), AVi (75%), MLa (<5%), MFe (<5%)
 - Financement: UE FP4, FP5
- Spécificité: activité masque de phase démarré au LAM depuis de nombreuses années
- Collaboration:
 - IAC: réalisation opto-méca
 - ESO: exploitation scientifique, interface APE0.13761273




THE FRENCH AEROSPACE LAB


Optique active



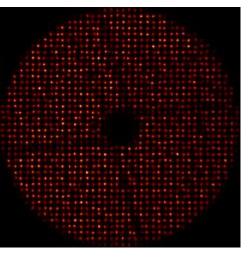
- Thematique "classique" du LAM
- Challenges in terms of surface quality (cf SPHERE)
- HiCat = high contrast platform @ STScl
 - Delivery of 3 super-polished off axis mirrors in 2013

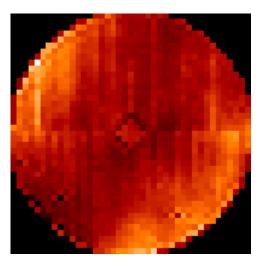
Exquisite results too:

Only 12nm WFE after 15 optics!

	O34	07	08
LoF WFE [nm]	13.0	7.0	6.4
MiF WFE [nm]	1.5	2.0	1.5
HiF WFE [nm]	1.3	2.2	1.6
Roughness [nm]	0.4	0.5	0.4

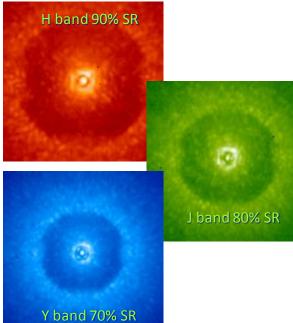
N'Diaye, Soummer+ 2014




Optique adaptative extrême

eXtreme Adaptive Optics R&D

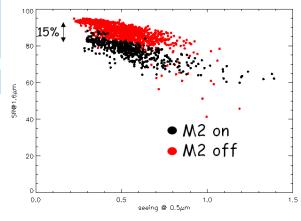
40x40 EMCCD filtered SH WFS



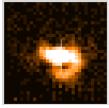
41x41 Piezzo DM

- WFS aspect
 - HO SH (Spatial filter, WCOG)
 - Pyramid (1PhD, 1PD)
 - IR WFS (1PD)
 - WF reconstruction (1PD)

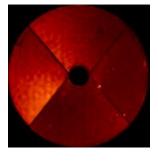
- Control aspects
 - LQG Kalman filtering (1PhD)
 - Interaction matrix calibration (Hadamard)
 - Online optimisation
 - GNDL (1PhD)

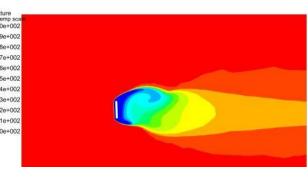


- Differential WF control
 - Phase diversity / LIFT (1PD)
 - Coronagraphic WFS (2PhD)
 - Zeus / ZELDA
 - Dark Hole (1PhD)
 - Post-processing (1PhD)

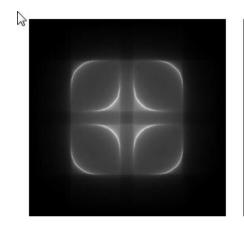


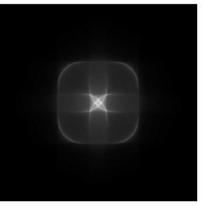
Analysis of SPHERE ultimate perf

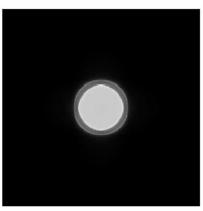

- Turbulence is not a problem.
- Vibrations of Secondary mirror M2
 - Investigation during COM1 COM2
 - 2 month analysis / mitigation
- LWE: Main limitation of SPHERE, 20% of nights impacted
 - Investigation during COM1 COM4, still ongoing
 - Opticon funding
 - Strong phase jumps in the pupil
 - Coordination of a multiple-face issue
 - Dome seeing particular aspect
 - Wave-front sensing
 - Impact on XAO WFS (ONERA-ESO)
 - Definition of a dedicated WFS (LAM-ONERA)
 - Dynamic flow simulation (ESO)
 - eXtreme AO operation (ONERA)
 - Instrument operation (LAM-ONERA)


Performance statistics COM1 / COM2

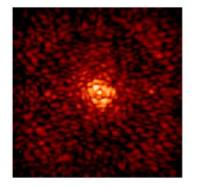
LWE typical PSF and aberrations

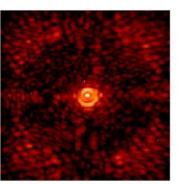

Air flow simulation, Temperature map




Fast WFS aspects

- Pyramid wave-front sensing (PhD 2017, PD)
 - General formalism for pyramid sensor
 - Variations around 4 faces pyramid
 - Flatten pyramid
 - N faces, conic pyramid
 - Revisite of modulation impact / signal
 - Study potential for XAO


Contrôle de front d'onde différentiel

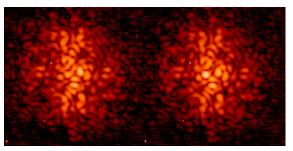


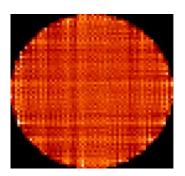
Post-focal calibration

- COFFEE: focal-plane WFS for coronagraphic system
 - B. Paul thesis (2014)
 - Application to SPHERE: phase conjugation (2013)
 - Development with CNES: phase and amplitude estimation

Raw SPHERE image

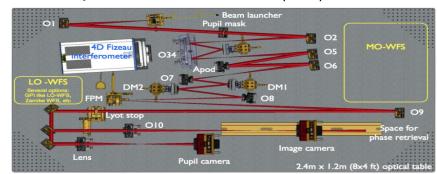
Correction after COFFEE measurement


- Ongoing Thesis
 - Lucie Leboulleux (ONERA-STScl, 2018): segmented pupil (ground and space)
 - Olivier Herscovici-Schiller (ONERA-CNES, 2018) : phase and amplitude estimation, online estimatio



Post-focal calibration R&D activities

- Keck collaboration
 - Improvement NIRC2 coronagraphic mode
 - Validation at short IWA with vortex coronagraph
 - Post-doc position ?
- LESIA collaboration
 - 1PhD (2018)
 - THD bench
 - Validation in very high contrast environment
 - Estimation phase / amplitude (done)
 - Compensation phase / amplitude on multiple DMs
- STScI collaboration
 - 1PhD (2018)
 - Multiple DM
 - Segmented pupil



Poke coronagraphic images

THD amplitude map, estimated by COFFEE

HiCat (STScI) bench

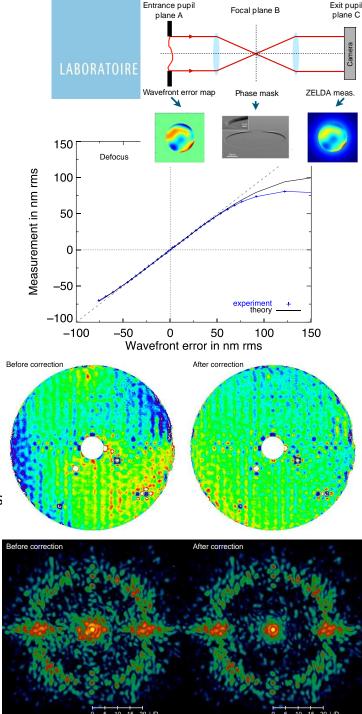
ZELDA

• Statut de l'activité:

VALIDE SUR SPHERE

- Proposition du concept et première validation labo en 2012 (N'Diaye et al. 2013)
- Prototype SPHERE en 2014, validation en 2015 (N'Diaye et al. submitted)
- Résultats extrêmement prometteurs, y compris sur le ciel!
- En parallèle, développements/tests sur banc MITHIC

• Ressources :

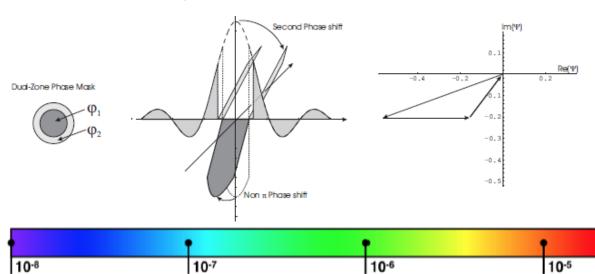

- Personnels: AVi KDo MND JFS/TFu
- Matériel: masques de phase, simulateur d'atmosphère corrigée XOA

• Calendrier:

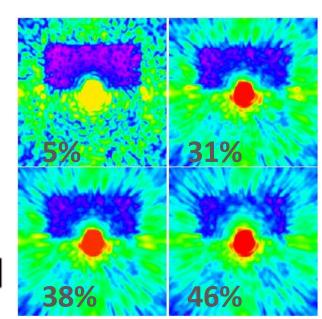
- 2016: validation sur le ciel + développement d'une procédure complète pour calibration des NCPA dans SPHERE
- 2017: implémentation dans plan de calibration SPHERE
- + en parallèle: développements sur MITHIC, avec perspective de tests sur le ciel
- ASOREX : dvpt commun ZELDA pour SPEED

• Collaboration:

- STScI: design masque et exploitation des données
- ESO: interface avec SPHERE (software, template), tests en interne et sur le ciel

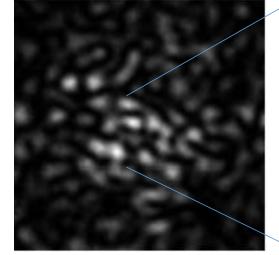


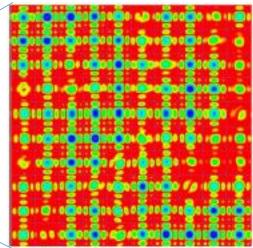
Technique d'imagerie haut contrastes

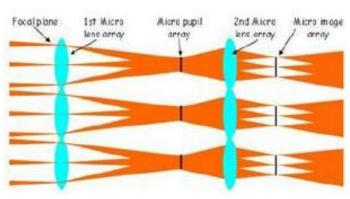


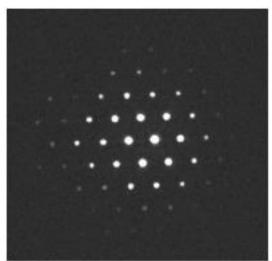
Coronagraphie: le DZPM

- Concept propose avec Remi Soummer en 2001
 - Etayé dans le cadre de sa thèse
 - Soummer, Dohlen, Aime, A&A 2003
- Achromatisation du coronographe de Roddier
 - Minimiser le vecteur du champ électrique dans la pupille
- Optimisation par Mamadou N'Diaye
 - Durant son PostDoc au LAM 2010-2012
 - eg. N'Diaye et al, A&A 2012
- Implémenté et démontré avec SCC sur THD (Meudon)
 - Delorme et al, A&A 2016

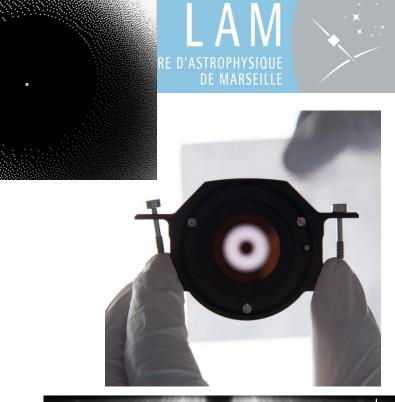


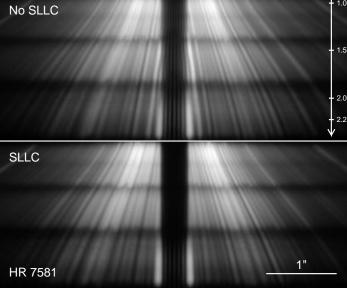



Spectro IFS, concept BIG RELIGIORE D'ASTROPHYSIQUE DE MARSEILLE


- Differents options consideres pour SPHERE
 - Slicers: Propagation des aberrations differentiels d'un slice a l'autre considéré gros risqué
 - TIGRE classique: Couplage important entre sousp[upilles en mode limité par diffraction
- BIGRE: double microlentilles
 - Reduit fortement le couplage
 - These de Jacopo Antichi
 - Antichi et al, ApJ 2009

TIGRE (simu)

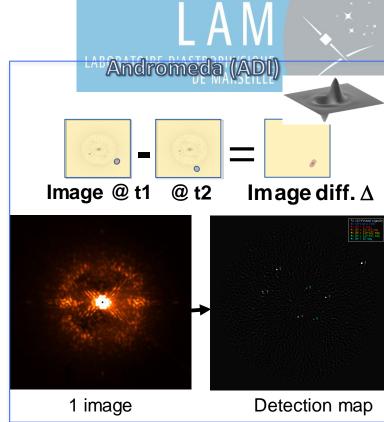

BIGRE (SPHERE)



SLLC

THE FRENCH AEROSPACE LAB

- Apodisation pour améliorer les performances du mode IRDIS/LSS
 - Suppression des résidus de diffraction proche du masque
 - Intérêt fort pour la spectro à R>300
- Spécificité:
 - Unicité du mode LSS + corono développé dans IRDIS
- Statut de l'activité:
 - Validé sur le ciel
 - Proposition du concept en 2013 (Vigan et al. 2013)
 - Prototype SPHERE en 2014, validation en 2015 (Vigan et al. 2016a)
 - Résultats sur le ciel au niveau des simulations
- · Ressources:
 - Personnels: AVi, MND, KDo
 - Matériel: apodiseur SLLC
 - Financière: 10 k€ (action incitative LAM)
- Calendrier:
 - 2016: incorporation dans SPHERE en temps que mode officiel
 - 2017+:
 - Exploration de concept pour gagner en IWA et en transmission
 - développements nécessaires pour une meilleure exploitation des données LSS en général (pas uniquement couplé avec SLLC)
- Collaboration ESO: interface avec SPHERE (software, template), tests en interne et sur le ciel



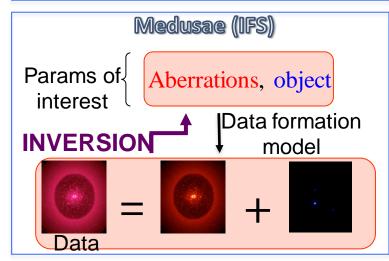


Image processing for High Contrast Imaging

- Origine: MISTRAL (1998, ONERA)
- Nature & specificity: inverse problem approach with instrument expertise
 - Explicit, fine instrument modeling
 - Use available prior information on sought object and on noise
 - Co-design w/ instrument: optimize globally
- Status:
 - 2 past PhDs (A. Cornia, M. Ygouf) +
 1 current PhD (F. Cantalloube, end 2016)
 - ADI (+SDI): [Cantalloube et al., A&A 2015]
 Andromeda operational & effective on on-sky data (NaCo, SPHERE)
 - IFS:
 - proof of principle on simulated data [Ygouf et al. A&A 2013]
 - diffs model/real data being analyzed
 - Collaborations: IPAG (PhD), CRAL (Défi Detection), ...

ONERA

Keplerian-Stacker

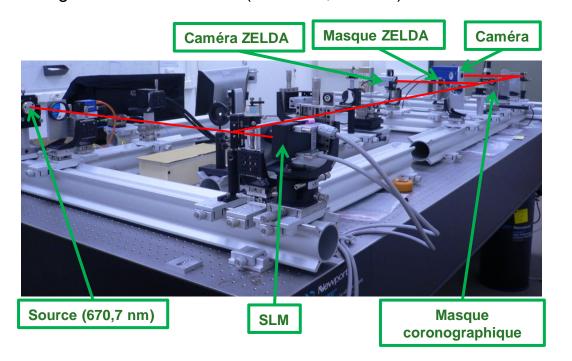
- **Description**: Détecter des planètes cachées (SNR<1) qui se déplacent dans des images coronographiques prises sur plusieurs mois-années.
- Ressources:
 - Humaines: 30% 1 ETP chercheur (H. Le Coroller), 15 % 1- ETP Thésard (M. Nowak) + collègues du LAM/OHP (5% de 5-ETP)
 - Matériel: Cluster de calcul du LAM
 - Financières: 3 Keuros du PNP et ASHRA pour 2016
- **Statut:** Démonstration réussie avec un algorithmes de minimisation en introduisant de fausses planètes à SNR<1 dans un groupe d'images simulées (SPHERE-IRDIS)

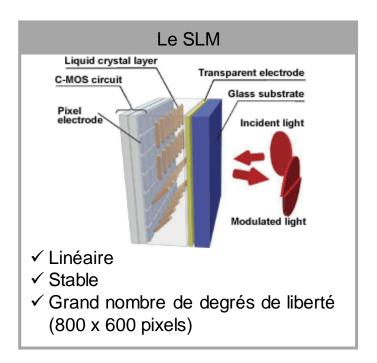
Le Coroller et al. 2015, OHP2015; Nowak, et al. 2016, A&A, En préparation

- Calendrier attendu:
 - ➤ 2016: Introduire de fausses planètes (SNR<1) dans des images d'archive (NaCo...) et les retrouver avec K-Stacker (adaptation de l'algorithme aux vrais données)
 - 2017: Recherche de planètes dans des images d'archives NaCo, Keck, SPHERE, etc.
 - ➤ 2018. Demande de temps (SPHERE) pour rechercher de nouvelles planètes autours d'étoiles « prometteuses » (Jeunes, brillantes, planètes déjà trouvées ou suspicion...)

Short exposure image study

- Visible images data cube (ZIMPOL)
- Validation of image formation models
- Study speckle statistics, comparison to S. Gladysz
- Internship 2016, 3 month
- Collaboration ETH Zurich


NERA Moyens de test et validation



THE FRENCH AEROSPACE LAB

MITHIC: Marseille Imaging Testbed for High Contrast

- > Banc dédié à l'imagerie à haut contraste
- > Développement et validation expérimentales de nouvelles méthodes de contrôle de front d'onde dédiées à l'imagerie à haut contraste (COFFEE, ZELDA)

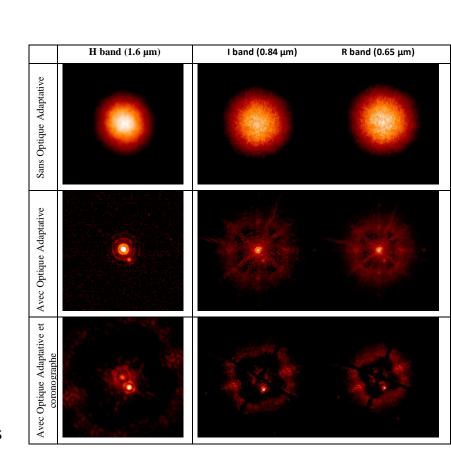
Acces ciel: SPHERE, Keck, LBT, GeMs

Les projets instrumentaux

- SPHERE
- SPHERE upgrade
- HARMONI
- Collaborations US Sol / espace

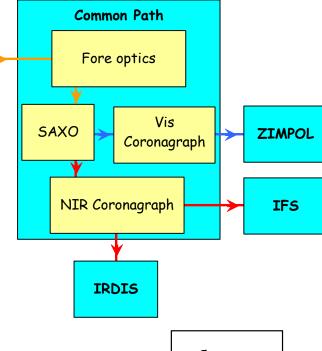
SPHERE

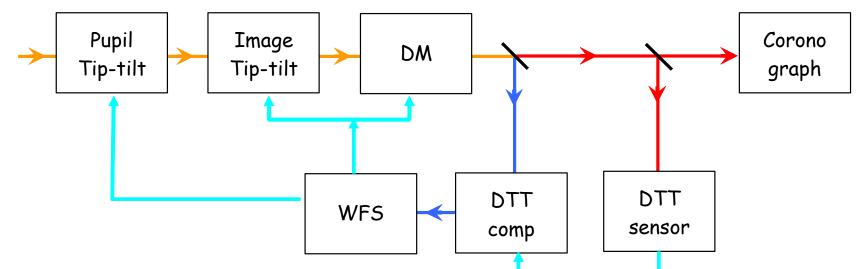
- Grand consortium européen, 12 labos
- PI: Jean-Luc Beuzit
- Labos français: IPAG, LAM, ONERA, LESIA, Lagrange



SPHERE: From design to scientific operation

- SPHERE : Strong investment
- XOA:
 - 1.4M ESO/INSU
 - 1.4M ONERA
 - 15 FTE on 8y
 - 6PhD
- IRDIS/système globale:
 - 1M HW au LAM
 - 3 ans CDD
 - ~ 80 FTE LAM
 - 2 PhD, 2 PostDoc
 - Forte implication scientifique
- From early design ... to integrated operationnal system
- Ensure operation with whole instrument
 - AIT/COM: 4 mois de presence sur site pour 5 personnes
 - A Vigan 1an complet sur site : excellent retour ESO
 - Definition of automated calibration sequence
 - Define and validate acquisition sequence, from lab to sky
 - Paticipation in routine science operations

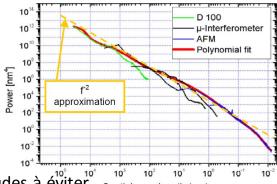




SPHERE: System design

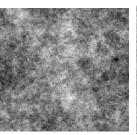
	ZIMPOL	IRDIS	IFS
FoV	Sq 3.5" (instantaneous) Up to 4" radius (mosaic)	Sq 11"	Sq 1.77"
Spectral Range	0.5 - 0.9 μm	0.95 - 2.32 μm	0.95 - 1.35/1.65 μm
Spectral information	BB, NB	BB, NB Slit spectro: 50/400	50 / 30
Linear Polarisation	Simultaneous on same detector, x 2 arms, exchangeable	Simultaneous dual beam, exchangeable	×

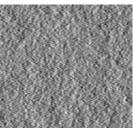
Les challenges de l'ITHD

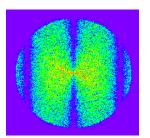

LAM

LABORATOIRE D'ASTROPHYSIQUE

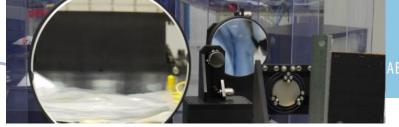
DE MARSEILLE


Residual speckles ~ PSD de l'onde


- XOA
- Optiques excellents
- Points critiques
 - · Chemin optique differential
 - Surfaces projetées à de grandes altitudes à éviter Spatial wavelength (µm)
 - Chromatic beam shift effect
 - Propagation de Fresnel
- Budget front d'onde: PSD
 - Hypothese simplificatrice: la loi de 1/f²
 - Apparait valide pour des optiques très bien polis



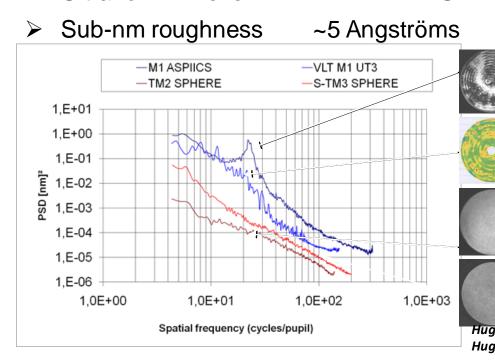
Spatial frequency (c/pup)

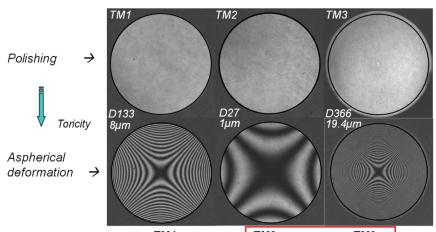


THE FRENCH AEROSPACE LAB

LAM ABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE

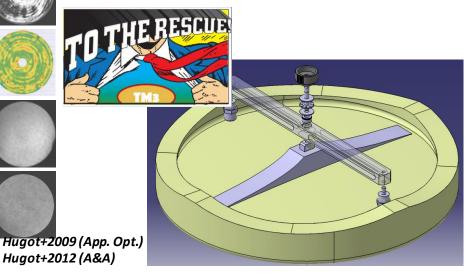
Les toriques: Super-polishing results


Exquisite results

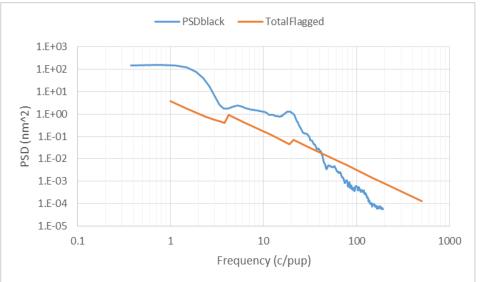

Form errorsRMS

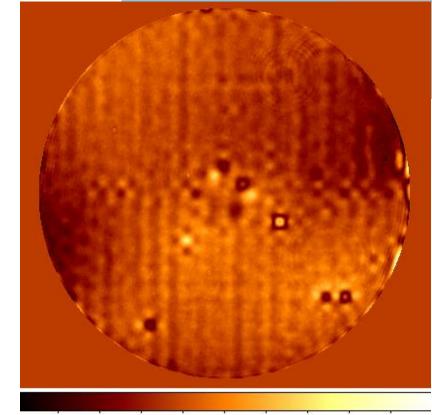
~10-20nm

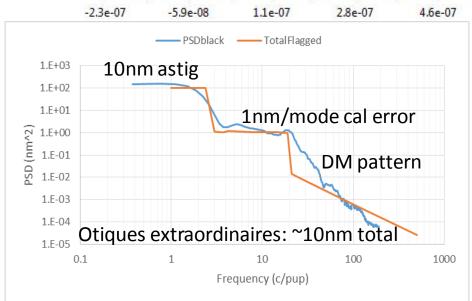
Ultra-low HF level


~1-2nm RMS

		I IVI T	
Optical quality	LF	9.0nm	
	MF	1.3nm	
	HF	1.1nm	
Roughness		5 A	


TM3
22.0 nm
2.5nm
1.6nm
9 A





Resultat des courses

- Mesure de front d'onde avec ZELDA
 - Les actuateurs morts...
 - 10nm rms astigmatism
 - Grille regulier liée aux actuateurs
 - Pas mal de gras
- Estimation de PSD assez loin du budget
- Prenant en compte les parametres "as built" la correspondence est bonne
- Calibration avec ZELDA en cours d'implementation

• Remplacement du HODM:

- risk mitigation, maintien de performance
- Deux limitations dans les observations SPHERE aujourd'hui:
 - NCPA: pas d'info quantitatives sur le sujet, mais aberrations clairement visibles dans les images ZELDA après calib. du système
 - Low Wind Effect: ~15% du temps sur SPHERE. Impact significatif, scientifique ET opérationnel

• Solutions possibles:

- Calibration off-line des NCPA (avec ZELDA ou diversité de phase): intéressant, mais limité par la stabilité des NCPA (Vigan et al. in prep.)
 - Solution baseline pendant le développement de SPHERE, mais pas implémentée à Paranal
- Remplacer le DTTS par ZELDA
 - Impact important sur l'ensemble du système, fréquence de correction, SNR, etc
- Collaboration: LAM/IPAG/ESO, +autres si nécessaires
- Avancement / calendrier
 - Priorités 2016:
 - Planification de remplacement HODM
 - validation ZELDA sur le ciel pour implémentation en mode off-line
 - 2017: ZELDA, étape intermédiaire avec mesure et correction sur le ciel en utilisant IRDIS. Sans doute utile pour voir l'interaction avec SAXO et le reste du système

Plus long terme

• Spectroscopie tres haute resolution

ONERA

Work-horse IFU

- capacite ITHD a l'etude
- Concept simple
 - Pas de ADC
 - Shaped pupil apodizer
 - Collaboration IPAG

Synthèse prospective moyen et long terme

- Maitrise de toute la chaine de conception instrumentale
 - Concept: Etudes système
 - Methodes: XAO, NCPA
 - Composants: corono, IFS, WFS, ...
 - Traitement de donnees en co-conception
- Validations de concept, implémentation instrumentale
 - Labo, puis conditions « réelles »
 - AIT/V, mise sur ciel: notamment prise en compte des aspects opérationnels
- Maitriser l'interface instrument-science
 - Exploitation scientifique
 - Identifier les voies d'amélioration
 - Développer de nouveaux concepts pour répondre a l'évolution des besoins des astronomes

Perspectives instrumentales

- Sol
 - Implication SPHERE upgrades
 - Performance status et améliorations (NCPA, LWE, ...)
 - Démonstration de nouveaux concepts: spectro haute-resolution, ...
 - Implication dans PCS
 - XAO design, simulation, integration, validation and operation
 - Interaction with high contrast component (masks, apodizers, imagers)
 - Definition of acquisition / observation strategies
 - Data processing: co-design with instrument & development of dedicated technics
- Space
 - Follow-up activity
 - Collaboration NASA-STScI / CNES / ESA
 - Understanding space environment constraint
 - Propose innovative concepts for ITHD in space

Perspectives traitement de données

Exploiter la dimension spectrale (données spectrales sous-exploitées)

- Combinaison des données ADI / SDI / IFS
- Données IFS SPHERE
 - Comprendre les données SPHERE, comparaison aux modèles
 - Développer des outils dédiés au multispectral
 - Suites de la thèse de F. Cantalloube
- Spectro longue fente (LSS)
 - Exploitation de données SPHERE
 - Extraction optimale du signal de la planète
 - Développement d'outils spécifiques
- Activites a debuter rapidement (these / Post Doc 2017), avec des competences systeme, XAO, TDI, astronomie

Imagerie courte pose

- Modèles de formation d'image
- Evaluer le potentiel de détection

Collaboration ONERA LAM IPAG CRAL

- Prospective scientifique du LAM (2015)
 - L'ITHD est à l'interface de 2 des 3 thématiques de recherche du LAM
 - Systèmes Planétaires (GSP) et R&D Instrumentation (GRD)
 - 40% du potentiel recherche + R&D ciblées dans les services techniques
 - Spectro haute résolution (>1000, K) pour spectro-imagerie haut contraste
 - Systèmes optiques innovants et compacts, plans focaux, ...
 - Optique adaptative et active spatiale
- Enjeux stratégiques pour LAM et ONERA à horizon 2025
 - Equipe commune LAM-ONERA
 - Développement de la filière OA/XOA → Optique active spatiale
 - Soutien CNES et ESA sur ces développements
 - Développements techno pour les futurs instruments sol/espace
 - Appuis à la participation Sci. dans les grands projets internationaux
 - ELT-PCS, Mission M/L de l'ESA, LUVOIR/HabEx ? (NASA Decadal)
- Renforcement des liens industriels et mise en place partenariats étroits
 - Mise en place d'un LIA avec le STScI en cours (signature automne 2016)
 - Mise en place d'un LabCom avec le groupe Thales (TAS/TSESO/TOSA) en 2016
 - Fourniture de sous-systèmes ou instruments issus de R&D Etudes missions