

Derniers résultats scientifiques InSight: structure interne de Mars de la croûte au noyau

Science Statute

P.Lognonné (Investigateur Principal SEIS) E.Beucler, **R.F. Garcia**, T.Kawamura (co-investigateurs SEIS) N.Compaire, M.Drilleau, M.Plasman, H.Samuel, B.Tauzin (collaborateurs SEIS) B.Knammeyer-Endrun, A.Khan, S.Stähler, D.Giardini, W.B.Banerdt et les co-auteurs des articles Science C.Yana, Chef de projet opération au CNES

Aujourd'hui sur Mars (1/2)

- Le 22 Juillet 2021 sera le Sol 943 depuis l'atterrissage d'InSight le 26 Novembre 2018, soit environ 1.4 année Martienne
- Malgré l'accumulation de poussière sur les panneaux solaires et grâce au nettoyage de ces derniers, InSight et SEIS continue de mesurer l'activité sismique de Mars.

Aujourd'hui sur Mars (2/2)

LMST

• Après 250 sols caractérisés par un fort bruit sismique (et peu de séismes détectés), la fenêtre bas bruit de la fin d'après midi réapparait et avec elle la détection de nouveaux séismes

- Plus de 60 séismes basse fréquence ou large bande détectés (f< 2 Hz)
- 120 séismes ou évènement haute fréquence détectés (> 2 Hz)
- 550 séismes ou évènement à 2.4 Hz détectés (f ~2.4 Hz)

Objectifs de la mission	Connaissance actuelle	2 We share a second sec
Epaisseur de la croûte	65±35 km	and the factor and the second and th
Stratification de la croûte	Pas d'information	
Vitesses sismiques du manteau	8±1 km/s (prédit)	A. Monorovicic (19)
Etat liquide ou solide du noyau	A priori liquide, mais pas de démonstration	(1906)
Rayon du noyau (+RISE)	1700±300 km	
Masse volumique du noyau (RISE)	6.4±1.0 gm/cc	von Rebeur-Pacshwitz
Flux de chaleur(HP3)	30±25 mW/m ² (prédit)	(Nature, 1889)
Activité sismique	Incertitude de x100	
Localisation des zones actives	Pas d'information	Exemples sur Terre
Flux de météorites	Incertitude de x6	

Objectifs de la mission (fin 2020)

Objectifs de la mission	Connaissance actuelle		
Epaisseur de la croûte	65±35 km		Lognonné et al. 2020
Stratification de la croûte	Zone altérée dans les 10 premiers km		Giardini et al. 2020 Banerdt et al. 2020
Vitesses sismiques du manteau	8±1 km/s (d'après des modèles)		nature geoscience
Etat liquide ou solide du noyau	A priori liquide, mais pas de démonstration	1	Mars insigh from InSig
Rayon du noyau (+RISE)	1700±300 km		EOCENE-OLIGOCENE TRANST Marrie ecosystem sta CONTINENTAL MERGE
Masse volumique du noyau (RISE)	6.4±1.0 gm/cc		
Flux de chaleur (HP3)	30±25 mW/m²(prédit)		Earth and
Activité sismique	Entre la Terre et la Lune		May 2020 - Volume 7 - Issue 5
Localisation des zones actives	Forte activité dans Cerberus		
Flux de météorites	Incertitude de x6		Wiley

Chantle for Igodiates

REPORT

PLANETARY SCIENCE

Upper mantle structure of Mars from InSight seismic data

Amir Khan^{1,2}*, Savas Ceylan¹, Martin van Driel^{1,3}, Domenico Giardini¹, Philippe Lognonné⁴, Henri Samuel⁴, Nicholas C. Schmerr⁵, Simon C. Stähler¹, Andrea C. Duran¹, Quancheng Huang⁵, Doyeon Kim⁵, Adrien Broquet^{6,7}, Constantinos Charalambous⁸, John F. Clinton⁹, Paul M. Davis¹⁰, Mélanie Drilleau¹¹, Foivos Karakostas⁵, Vedran Lekic⁵, Scott M. McLennan¹², Ross R. Maguire⁵, Chloé Michaut^{13,14}, Mark P. Panning¹⁵, William T. Pike⁸, Baptiste Pinot¹¹, Matthieu Plasman⁴, John-Robert Scholz¹⁶, Rudolf Widmer-Schnidrig¹⁷, Tilman Spohn¹⁸, Suzanne E. Smrekar¹⁵, William B. Banerdt¹⁵

Caractérisation du manteau: recherche des échos

Analyse sur les 8 meilleurs séismes et avec 3 méthodes différentes

Contribution P.Lognonné, M.Plasman

Trajets des ondes directes et des multiples

Modèle de vitesses sismiques S et P

Contribution A.Khan

Caractérisation Thermique et geodynamique

Contribution A.Khan

InSight

Modèle de température et sismique proposé

• Pour une minéralogie moyenne du manteau (comme celle obtenue à partir des SNC), les modèles de vitesses P et S permettent de contraindre la température dans la lithosphère Martienne

• Une première estimation du flux de chaleur du manteau peut ainsi être proposée, avec un flux de chaleur 3-5 fois moindre que sur Terre

Noyau

REPORT

Seismic detection of the Martian core

Simon C. Stähler^{1*}, Amir Khan^{1,2}, W. Bruce Banerdt³, Philippe Lognonné⁴, Domenico Giardini¹, Savas Ceylan¹, Mélanie Drilleau⁵, A. Cecilia Duran¹, Raphaël F. Garcia⁵, Quancheng Huang⁶, Doyeon Kim⁶, Vedran Lekic⁶, Henri Samuel⁴, Martin Schimmel⁷, Nicholas Schmerr⁶, David Sollberger¹, Éléonore Stutzmann⁴, Zongbo Xu⁴, Daniele Antonangeli⁸, Constantinos Charalambous⁹, Paul Davis¹⁰, Jessica C. E. Irving¹¹, Taichi Kawamura⁴, Martin Knapmeyer¹², Ross Maguire⁶, Angela G. Marusiak³, Mark P. Panning³, Clément Perrin¹³, Ana-Catalina Plesa¹², Attilio Rivoldini¹⁴, Cédric Schmelzbach¹, Géraldine Zenhäusern¹, Éric Beucler¹³, John Clinton¹⁵, Nikolaj Dahmen¹, Martin van Driel¹, Tamara Gudkova¹⁶, Anna Horleston¹¹, W. Thomas Pike⁹, Matthieu Plasman⁴, Suzanne E. Smrekar³

Identification individuelle des phases du noyau

Contribution R.Garcia, E.Stutzmann

- Phases de faible amplitude
- 6 méthodes différentes ont été utilisées
- Une analyse statistique a quantifié l'amplitude du bruit atmosphérique

Contribution Z.Xu, P.Lognonné

Analyse collective des signaux

ScS

- 6 séismes martiens utilisés:
 - Magnitude comprise entre 3 et 3.7
 - Distance entre 1650km et 2350 km
- Ces signaux ont été sommés afin d'estimer l'énergie provenant d'un réflecteur de rayon variable
- L'analyse montre un excès d'énergie sismique réfléchie pour un noyau liquide avec un rayon de 1830 ± 40 km avec une masse volumique de 5.7-6.3 g/cm³

12

• Estimation avant lancement: 1400-2000km

Estimation SEIS: 1830 km±40 km

Un gros noyau

plus riche en éléments légers que le noyau terrestre

ne permettant pas à une couche de perovskite d'exister à la base du manteau

Contribution M.Drilleau, H.Samuel

REPORT

PLANETARY SCIENCE

Thickness and structure of the martian crust from InSight seismic data

Brigitte Knapmeyer-Endrun¹*, Mark P. Panning², Felix Bissig³, Rakshit Joshi⁴, Amir Khan^{3,5}, Doyeon Kim⁶, Vedran Leki⁶, Benoit Tauzin^{7,8}, Saikiran Tharimena²†, Matthieu Plasman⁹, Nicolas Compaire¹⁰, Raphael F. Garcia¹⁰, Ludovic Margerin¹¹, Martin Schimmel¹², Éléonore Stutzmann⁹, Nicholas Schmerr⁶, E. Bozda¹³, Ana-Catalina Plesa¹⁴, Mark A. Wieczorek¹⁵, Adrien Broquet^{16,15}, Daniele Antonangeli¹⁷, Scott M. McLennan¹⁸, Henri Samuel⁹, Chloé Michaut^{7,19}, Lu Pan²⁰, Suzanne E. Smrekar², Catherine L. Johnson^{21,22}, Nienke Brinkman³, Anna Mittelholz³, Attilio Rivoldini²³, Paul M. Davis²⁴, Philippe Lognonné^{9,19}, Baptiste Pinot¹⁰, John-Robert Scholz⁴, Simon Stähler³, Martin Knapmeyer¹⁴, Martin van Driel³, Domenico Giardini³, W. Bruce Banerdt²

Caractérisation de la croute Martienne par les séismes

- Première méthode: par les ondes converties des séismes
 Objectif: identifier les conversions des ondes associée
- au moho Martien (interface croute/manteau)
- Plusieurs méthodes différentes ont été utilisées pour confirmer les résultats

Croûte altérée Lognonné et al. 2020

Modélisation pour 2 modèles

Croûte ~20 km

Croûte ~35 km

P.Lognonné © SEIS and InSight team

Croûte

Manteau

Conclusion: 2 modèles possibles

A Thin Crust

Confirmation par les analyse de bruit sismique Martien

- Seconde méthode: analyse du bruit sismique généré par l'atmosphère
- Objectif: identifier les ondes faisant des allers/retours entre la surface et une interface crustale
- Là encore, plusieurs méthodes différentes ont été utilisées
- Confirme principalement l'interface à 20 km de profondeur sans exclure celui de 35 km

C2 C3

- Un travail journalier et quotidien des services d'Observation de SEIS et d'InSight
 - Assurant l'opération de l'instrument, sa surveillance et le flux de commandes et de données entre le JPL et le CNES. (SISMOC au CNES, Equipe Instrumentale à l'IPGP)
 - Diffusant les données formatées et calibrées à la communautée scientifique (Mars SEIS data Service à l'IPGP)
 - Analysant quotidiennement les données SEIS pour identifier et répertorier les évènements sismiques : Mars Quake Service, ETHZ avec l'IPGP (T.Kawamura, M.Plasman), l'Université de Bristol
 - Répertoriant, classant et exécutant les commandes de rapatriement d'évènements SEIS : ERP Guru, avec le LPG et l'Université de Nantes (E.Beucler)
 - Les données SEIS et les catalogues de sismicité sont enfin diffusées à la communauté scientifique tous les 90 jours, ainsi qu'au réseau Sismo à l'Ecole opérée par GeoAzur et l'Université de Nice

Derrière la scène: exemple d'évènements vu par le MQS

ext-unknown 💌 🔽 Deconvolution 2.0-8.0 s 💌 ZNE 💌 Sensor 200 Phase identification: None Rayleigh distance R1 + overtones G1 + overtones Body wave azimuth [🎯 Sensor Velocity, VBB, VBB Velocity SCI mode хв ELYSE 02 вн sps: 20.0 Unit: M/S Az: 108.9° ъc PSD [dB] -150.0 -153.0 -156.0 -159.0 -162.0 -168.0 -170.5 -173.5 -176.5 -179.5 -182.5 -185.5 -185.5 -191.0 -194.0 -197.0 07:00:39.13 zelegak_stabs WWWMWWWWWWWW Z MANNA MANN WWWWWW amax: 3.3183e-09 mean: 7.36451e-13 N AMAN MANAMANA amax: 3.80244e-09 mean: -1.34168e-12 NAMAN amax: 5.00717e-09 mean: -8.65559e-14 -200.0 03:24:00 03:25:00 03:26:00 03:14:00 03:15:00 03:18:00 03:20:00 03:23:00 03:13:00 03:16:00 03:17:00 03:19:00 03:21:00 03:22:00 325M 02 BH 03 BH 58 BZC 02 MH 67 SH 65 EH 67 MH 85 LLZ T τ τ ax: 2.9 04:00:00 04:30:00 05:00:00 06:30:00 07:00:00 08:00:00 03:30:00 05:30:00 06:00:00 07:30:00 325M

S0325

Objectifs de la mission	Connaissance actuelle		
Epaisseur de la croûte	20-35 km sous InSight	nature	
Stratification de la croûte	Zone altérée dans les 10 premiers km	Lognonné et al. 2020	
Vitesses sismiques du manteau	7.8±0.2 km/s	Baddras basister 9 , ref. Palagandada disekstaring Catal assess of hands.	
Etat liquide ou solide du noyau	Liquide à l'interface du manteau		
Rayon du noyau (SEIS)	1830±40 km		
Masse volumique du noyau (SEIS)	6±0.3 gm/cc	Knapmeyer-Endrun et al. 2021	
Flux de chaleur (HP3)	14-29 mW/m ²	Khan et al. 2021 Stähler et al. 2021	
Activité sismique	Entre la Terre et la Lune	nature geoscience	
Localisation des zones actives	Forte activité dans Cerberus	Giardini et al. 2020 Banerdt et al. 2020	
Flux de météorites	Incertitude de x3		

- Le principal problème de la mission InSight actuellement est l'énergie disponible à cause du dépôt de poussières sur les panneaux solaires.
 - 4 fois moins d'énergie que au début de la mission
 - Les instruments météo (Pression, Vent, Température, Magnétomètre) sont éteins depuis 300 sols

Qu'en est-il de la mission?

- Le principal problème de la mission InSight est l'énergie disponible à cause du dépôt de poussières sur les panneaux solaires.
 - 4 fois moins d'énergie que au début de la mission
 - Les instruments météo (Pression, Vent, Température, Magnétomètre) sont éteins depuis 300 sols
- => sablage des panneaux solaires pour enlever une partie de la poussière

Qu'en est-il de la mission?

- Le principal problème de la mission InSight est l'énergie disponible à cause du dépôt de poussières sur les panneaux solaires.
 - 4 fois moins d'énergie que au début de la mission
 - Les instruments météo (Pression, Vent, Température, Magnétomètre) sont éteins depuis 300 sols
- => sablage des panneaux solaires pour enlever une partie de la poussière

4% d'énergie gagnée au premier essai, Moins pour les autres, mais plusieurs mois gagnés

JPL **Transportation modes**

Suspension - dust

D'après

M. Golombek

- Saltation sand
- Creep
- Reptation

Soil/sand entrained in Wind during Dump **Overcomes threshold** friction wind speed **Dispersed and impacts** surface or solar panel Kicks up dust goes into suspension 100 times size ₂Sand grain

6/28/21

Figure 3.22

The friction of the wind movement across a surface can set particles into motion if the wind is sufficiently strong. The diagram illustrates how particles are moved by the wind in three modes: suspension, saltation, and creep. [From Thomas A. Mutch, The Geology of Mars (copyright © 1976 by Princeton University Press): fig. 1, p. 236. Reprinted by permission of Princeton University Press.]

Search for Infrasound Signals in InSight Data Using Coupled Pressure/Ground Deformation Methods 🔄

Raphael F. Garcia; Naomi Murdoch; Ralph Lorenz; Aymeric Spiga; Daniel C. Bowman; Philippe Lognonné; Don Banfield; William Bruce Banerdt

Abstract 🗸 View article 🔂 PDF Add to Citation Manager

Bulletin of the Seismological Society of America October 26, 2021, Vol.111, 3055-3064. doi:https://doi.org/10.1785/0120210079

Energy Envelope and Attenuation Characteristics of High-Frequency (HF) and Very-High-Frequency (VF) Martian Events 🐺

Sabrina Menina; Ludovic Margerin; Taïchi Kawamura; Philippe Lognonné; Jules Marti; Mélanie Drilleau; Marie Calvet; Nicolas Compaire; Raphaël Garcia; Foivos Karakostas; Nicholas Schmerr; Martin van Driel; Simon C. Stähler; Matthieu Plasman; Domenico Giardini; Sebastian Carrasco; Brigitte Knapmeyer-Endrun; Grégory Sainton; William B. Banerdt

Abstract 🗸 View article 🔂 PDF Add to Citation Manager

Bulletin of the Seismological Society of America November 02, 2021, Vol.111, 3016-3034. doi:https://doi.org/10.1785/0120210127

Scattering Attenuation of the Martian Interior through Coda-Wave Analysis Foivos Karakostas; Nicholas Schmerr; Ross Maguire; Quancheng Huang; Doyeon Kim; Vedran Lekic; Ludovic Margerin; Ceri Nunn; Sabrina Menina; Taichi Kawamura; Philippe Lognonné; Domenico Giardini; Bruce Banerdt

Abstract 🗸 View article 🔂 PDF Add to Citation Manager

Bulletin of the Seismological Society of America October 26, 2021, Vol.111, 3035-3054. doi:https://doi.org/10.1785/0120210253

Magnitude Scales for Marsquakes Calibrated from InSight Data 🐺

Maren Böse; Simon C. Stähler; Nicholas Deichmann; Domenico Giardini; John Clinton; Philppe Lognonné; Savas Ceylan; Martin van Driel; Constantinos Charalambous; Nikolaj Dahmen; Anna Horleston; Taichi Kawamura; Amir Khan; Martin Knapmeyer; Guénolé Orhand-Mainsant; John-Robert Scholz; Fabian Euchner; W. Bruce Banerdt

Abstract 🗸 View article Supplementary data 🔂 PDF Add to Citation Manager

Bulletin of the Seismological Society of America June 22, 2021, Vol.111, 3003-3015. doi:https://doi.org/10.1785/0120210045

The Site Tilt and Lander Transfer Function from the Short-Period Seismometer of InSight on Mars $\overleftarrow{\bowtie}$

Alexander E. Stott; Constantinos Charalambous; Tristram J. Warren; William T. Pike; Robert Myhill; Naomi Murdoch; John B. McClean; Ashitey Trebi-Ollennu; Grace Lim; Raphael F. Garcia; David Mimoun; Sharon Kedar; Kenneth J. Hurst; Marco Bierwirth; Philippe Lognonné; Nicholas A. Teanby; Anna Horleston; William B. Banerdt

Resonances and Lander Modes Observed by InSight on Mars (1–9 Hz) Nikolaj L. Dahmen; Géraldine Zenhäusern; John F. Clinton; Domenico Giardini; Simon C. Stähler; Savas Ceylan; Constantinos Charalambous; Martin van Driel; Kenneth J. Hurst; Sharon Kedar; Philippe Lognonné; Naomi Murdoch; Robert Myhill; Mark P. Panning; William T. Pike; Martin Schimmel; Cédric Schmelzbach; John-Robert Scholz; Alexander E. Stott; Eleonore Stutzmann; William B. Banerdt

Anatomy of Continuous Mars SEIS and Pressure Data from Unsupervised Learning Salma Barkaoui; Philippe Lognonné; Taichi Kawamura; Éléonore Stutzmann; Léonard Seydoux; Maarten V. de Hoop; Randall Balestriero; John-Robert Scholz; Grégory Sainton; Matthieu Plasman; Savas Ceylan; John Clinton; Aymeric Spiga; Rudolf Widmer-Schnidrig; Francesco Civilini; W. Bruce Banerdt

Abstract 🗸 View article Supplementary data 🔂 PDF Add to Citation Manager

Bulletin of the Seismological Society of America November 09, 2021, Vol.111, 2964-2981. doi:https://doi.org/10.1785/0120210095

ARTICLE

https://doi.org/10.1038/s41467-021-26957-7 OPEN

The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations

M. Hobiger^{1,6,7}, M. Hallo ^{1,7}, C. Schmelzbach ^{2,7⊠}, S. C. Stähler ¹, D. Giardini ², M. Golombek³, J. Clinton ¹, N. Dahmen ², G. Zenhäusern ², B. Knapmeyer-Endrun⁴, S. Carrasco ⁴, C. Charalambous ⁵, K. Hurst ³, S. Kedar ³ & W. B. Banerdt³

Check for updates

- InSight va remplir tous ses objectifs scientifiques!
- La mission va "mourir" faute de puissance dans l'été 2022 à moins qu'un gros tourbillon de poussière ne vienne nettoyer les panneaux
- Encore des surprises dans les dernières données acquises (impacts de météorites, séismes lointains)
- Les modèles de rechange des capteurs de SEIS (VBB et SP) iront vers la Lune dans le projet "Farside Seismic Suite" et seront déployé dans le cratère "Schrödinger": une nouvelle aventure pour "sismo à l'école"?

